Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Construction and characterization of glutaredoxin-negative mutants of Escherichia coli.

Identifieur interne : 001343 ( Main/Exploration ); précédent : 001342; suivant : 001344

Construction and characterization of glutaredoxin-negative mutants of Escherichia coli.

Auteurs : M. Russel [États-Unis] ; A. Holmgren

Source :

RBID : pubmed:3277191

Descripteurs français

English descriptors

Abstract

Deoxyribonucleotides, the precursors of DNA, are formed de novo by ribonucleotide reductase, and in vitro thioredoxin or glutathione plus glutaredoxin have been isolated as hydrogen donors. The in vivo hydrogen donor for ribonucleotide reductase is not known. To study this, the Escherichia coli glutaredoxin gene (255 base pairs) was inactivated by inserting a 2-kilobase kanamycin-resistance fragment into the coding sequence of the cloned gene. The inactivated gene was inserted into the E. coli chromosome and mapped to about 18.5 min. A gene replacement technique was used to obtain a strain, A407, that lacked glutaredoxin by radioimmunoassay and by enzymatic assay with ribonucleotide reductase. Glutaredoxin was found not to be essential for viability of E. coli. Thioredoxin is also not essential for viability, as had been shown earlier, but a double mutant lacking glutaredoxin and thioredoxin could not be obtained by P1 transduction on a defined medium, indicating that either thioredoxin or glutaredoxin is essential. In rich medium, very slowly growing, unstable transductants were obtained that at high frequency gave rise to better growing cells. One such isolate, A410, was shown to still lack glutaredoxin and thioredoxin.

DOI: 10.1073/pnas.85.4.990
PubMed: 3277191
PubMed Central: PMC279686


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Construction and characterization of glutaredoxin-negative mutants of Escherichia coli.</title>
<author>
<name sortKey="Russel, M" sort="Russel, M" uniqKey="Russel M" first="M" last="Russel">M. Russel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Genetics, Rockefeller University, New York, NY 10021.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Laboratory of Genetics, Rockefeller University, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1988">1988</date>
<idno type="RBID">pubmed:3277191</idno>
<idno type="pmid">3277191</idno>
<idno type="pmc">PMC279686</idno>
<idno type="doi">10.1073/pnas.85.4.990</idno>
<idno type="wicri:Area/Main/Corpus">001341</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001341</idno>
<idno type="wicri:Area/Main/Curation">001341</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001341</idno>
<idno type="wicri:Area/Main/Exploration">001341</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Construction and characterization of glutaredoxin-negative mutants of Escherichia coli.</title>
<author>
<name sortKey="Russel, M" sort="Russel, M" uniqKey="Russel M" first="M" last="Russel">M. Russel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Genetics, Rockefeller University, New York, NY 10021.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Laboratory of Genetics, Rockefeller University, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1988" type="published">1988</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>Escherichia coli (genetics)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Plasmids (MeSH)</term>
<term>Proteins (genetics)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombination, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Escherichia coli (génétique)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Plasmides (MeSH)</term>
<term>Protéines (génétique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Recombinaison génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Protéines</term>
<term>Protéines bactériennes</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
<term>Oxidoreductases</term>
<term>Plasmids</term>
<term>Recombination, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Plasmides</term>
<term>Recombinaison génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Deoxyribonucleotides, the precursors of DNA, are formed de novo by ribonucleotide reductase, and in vitro thioredoxin or glutathione plus glutaredoxin have been isolated as hydrogen donors. The in vivo hydrogen donor for ribonucleotide reductase is not known. To study this, the Escherichia coli glutaredoxin gene (255 base pairs) was inactivated by inserting a 2-kilobase kanamycin-resistance fragment into the coding sequence of the cloned gene. The inactivated gene was inserted into the E. coli chromosome and mapped to about 18.5 min. A gene replacement technique was used to obtain a strain, A407, that lacked glutaredoxin by radioimmunoassay and by enzymatic assay with ribonucleotide reductase. Glutaredoxin was found not to be essential for viability of E. coli. Thioredoxin is also not essential for viability, as had been shown earlier, but a double mutant lacking glutaredoxin and thioredoxin could not be obtained by P1 transduction on a defined medium, indicating that either thioredoxin or glutaredoxin is essential. In rich medium, very slowly growing, unstable transductants were obtained that at high frequency gave rise to better growing cells. One such isolate, A410, was shown to still lack glutaredoxin and thioredoxin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">3277191</PMID>
<DateCompleted>
<Year>1988</Year>
<Month>03</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>85</Volume>
<Issue>4</Issue>
<PubDate>
<Year>1988</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Construction and characterization of glutaredoxin-negative mutants of Escherichia coli.</ArticleTitle>
<Pagination>
<MedlinePgn>990-4</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Deoxyribonucleotides, the precursors of DNA, are formed de novo by ribonucleotide reductase, and in vitro thioredoxin or glutathione plus glutaredoxin have been isolated as hydrogen donors. The in vivo hydrogen donor for ribonucleotide reductase is not known. To study this, the Escherichia coli glutaredoxin gene (255 base pairs) was inactivated by inserting a 2-kilobase kanamycin-resistance fragment into the coding sequence of the cloned gene. The inactivated gene was inserted into the E. coli chromosome and mapped to about 18.5 min. A gene replacement technique was used to obtain a strain, A407, that lacked glutaredoxin by radioimmunoassay and by enzymatic assay with ribonucleotide reductase. Glutaredoxin was found not to be essential for viability of E. coli. Thioredoxin is also not essential for viability, as had been shown earlier, but a double mutant lacking glutaredoxin and thioredoxin could not be obtained by P1 transduction on a defined medium, indicating that either thioredoxin or glutaredoxin is essential. In rich medium, very slowly growing, unstable transductants were obtained that at high frequency gave rise to better growing cells. One such isolate, A410, was shown to still lack glutaredoxin and thioredoxin.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Russel</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Genetics, Rockefeller University, New York, NY 10021.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA-18213</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="Y">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1988</Year>
<Month>2</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1988</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1988</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">3277191</ArticleId>
<ArticleId IdType="pmc">PMC279686</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.85.4.990</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Mar;79(6):1935-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7043468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Jun;146(3):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7016827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 May;154(2):756-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6341362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jun;154(3):1064-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6343342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Aug;80(16):4894-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6308658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Oct 17;136(1):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6352262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1983 Nov;25(1):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6319233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1984 Sep;159(3):1034-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6384177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1985 Feb;161(2):799-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3881414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Jan;82(1):29-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3881756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Sep;167(3):920-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3528128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1986;43(1-2):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3530878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Nov 15;261(32):14997-5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3533930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1960 Feb;235:457-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14416749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1970 Oct 14;53(1):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4922220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1970 Nov;17(1):68-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4922330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat New Biol. 1972 Jul 19;238(81):69-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4558262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1973 Feb 1;32(3):451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4571065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1973 Feb 1;32(3):457-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4571066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1977 Oct 20;155(2):145-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">337124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Jan 25;253(2):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">412850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3672-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">34620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Oct 10;254(19):9627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">385588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1980;178(3):525-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6993851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Oct;144(1):312-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6998954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Feb;145(2):1110-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7007341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1982 Jul-Aug;19(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6292041</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Russel, M" sort="Russel, M" uniqKey="Russel M" first="M" last="Russel">M. Russel</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001343 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001343 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:3277191
   |texte=   Construction and characterization of glutaredoxin-negative mutants of Escherichia coli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:3277191" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020